Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552261

RESUMO

Coexistence impact of pollutants of different nature on halophytes tolerance to metal excess has not been thoroughly examined, and plant functional responses described so far do not follow a clear pattern. Using the Cu-tolerant halophyte Sarcocornia fruticosa as a model species, we conducted a greenhouse experiment to evaluate the impact of two concentration of copper (0 and 12 mM CuSO4) in combination with three nitrate levels (2, 14 and 50 mM KNO3) on plant growth, photosynthetic apparatus performance and ROS-scavenging enzymes system. The results revealed that S. fruticosa was able to grow adequately even when exposed to high concentrations of copper and nitrate. This response was linked to the plant capacity to uptake and retain a large amount of copper in its roots (up to 1500 mg kg-1 Cu), preventing its transport to aerial parts. This control of translocation was further magnified with nitrate concentration increment. Likewise, although Cu excess impaired S. fruticosa carbon assimilation capacity, the plant was able to downregulate its light-harvesting complexes function, as indicated its lowers ETR values, especially at 12 mM Cu + 50 mM NO3. This downregulation would contribute to avoid excess energy absorption and transformation. In addition, this strategy of avoiding excess energy was accompanied by the upregulation of all ROS-scavenging enzymes, a response that was further enhanced by the increase in nitrate concentration. Therefore, we conclude that the coexistence of nitrate would favor S. fruticosa tolerance to copper excess, and this effect is mediated by the combined activation of several tolerance mechanisms.


Assuntos
Cobre , Nitratos , Plantas Tolerantes a Sal , Cobre/metabolismo , Cobre/toxicidade , Nitratos/metabolismo , Nitratos/farmacologia , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aizoaceae/metabolismo , Aizoaceae/efeitos dos fármacos , Aizoaceae/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 163: 478-485, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30075451

RESUMO

The potential importance of Juncus acutus for remediation of Zn-contaminated lands has been recognized, because of its Zn tolerance and capacity to accumulate Zn. Since it is also a halophyte, the extent to which salinity influences its Zn tolerance requires investigation. A factorial greenhouse experiment was designed to assess the effect of NaCl supply (0 and 85 mM NaCl) on the growth, photosynthetic physiology and tissue ions concentrations of plants exposed to 0, 30 and 100 mM Zn. Our results indicated that NaCl supplementation alleviated the effects of Zn toxicity on growth, as Zn at 100 mM reduced relative growth rate (RGR) by 60% in the absence of NaCl but by only 34% in plants treated also with NaCl. This effect was linked to a reduction in Zn tissue concentrations, as well as to overall protective effects on various stages in the photosynthetic pathway. Thus, at 85 mM NaCl plants were able to maintain higher net photosynthesis (AN) than in the absence of added NaCl, although there were no differences in stomatal conductance (gs). This contributed to preserving the trade-off between CO2 acquisition and water loss, as indicated by higher intrinsic water use efficiency (iWUE). Hence, AN differences were ascribed to limitation in the RuBisCO carboxylation, manifested as higher intercellular CO2 concentration (Ci), together with dysfunction of PSII photochemistry (in term of light harvest and energy excess dissipation), as indicated by higher chronic photoinhibition percentages and variations in the photosynthetic pigment profiles in presence of Zn under non-saline conditions.


Assuntos
Magnoliopsida/efeitos dos fármacos , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Zinco/toxicidade , Clorofila/metabolismo , Magnoliopsida/metabolismo , Fotossíntese/efeitos dos fármacos , Plantas Tolerantes a Sal/metabolismo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...